Machine Learning Analysis of Identifies Polyunsaturated Fatty Acid Metabolites Predictive of Adverse Outcomes In Heart Failure with Preserved Ejection Fraction Patients

Authors

DOI:

https://doi.org/10.46570/utjms.vol11-2023-951

Keywords:

Machine learning, Polyunsaturated Fatty Acid (PUFA) metabolites, Heart failure with preserved ejection fraction (HFpEF), Cardiovascular health, Lipidomics framework

Downloads

Published

2023-12-15

How to Cite

Faleel, D., Elzanaty, A., Aradhyula, V., Vyas, R., Dube, P., T. Haller, S., Gupta, R., J. Kennedy, D., & J. Khouri, S. (2023). Machine Learning Analysis of Identifies Polyunsaturated Fatty Acid Metabolites Predictive of Adverse Outcomes In Heart Failure with Preserved Ejection Fraction Patients . Translation: The University of Toledo Journal of Medical Sciences, 11(3). https://doi.org/10.46570/utjms.vol11-2023-951

Issue

Section

Dr. Lance D. Dworkin Department of Medicine Research Symposium