Tracking Neural Deterioration in proNGF-Overexpressing Mice: Hippocampal Serotonergic Dysfunction and Synaptic Loss Drive Neurodegeneration

Authors

  • Noah Jiang Summer Biomedical Science Program in Bioinformatics, University of Toledo, Toledo, OH, USA.
  • Anya Musalgavkar Summer Biomedical Science Program in Bioinformatics, University of Toledo, Toledo, OH, USA.
  • Ali Ridi Summer Biomedical Science Program in Bioinformatics, University of Toledo, Toledo, OH, USA
  • Mahathi Srivatsan Summer Biomedical Science Program in Bioinformatics, University of Toledo, Toledo, OH, USA.
  • Robert E. McCullumsmith Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA. Promedica Neurosciences Institute, Toledo, OH, USA..
  • Ali S. Imami Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.. Promedica Neurosciences Institute, Toledo, OH, USA.
  • Nicole A. Bell Department of Neurosciences and Psychiatry, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.

DOI:

https://doi.org/10.46570/utjms-2025-1901

Keywords:

Alzheimer's Disease, animal model, pathways, Transcriptomic profiles, DEG's, nerve growth factor, hippocampus, Gnai1, KCNAB2, neurodegeneration

Abstract

ProNGF, the precursor protein of mature nerve growth factor (NGF), plays a complex role in neural signaling and has been implicated in neurodegeneration through its apoptotic signaling with the p75NTR receptor. For example, in Alzheimer's disease increased levels of proNGF are associated with cholinergic neuron loss and excitatory/inhibitory imbalance. This study deploys cutting edge a bioinformatic analyses of RNAseq data from TgproNGF#3 mice models that express furin-resistant proNGF. The TgproNGF#3 mouse mimics the pathological accumulation of the precursor NGF protein observed in these diseased brains. Our analysis revealed that proNGF accumulation in the hippocampus and entorhinal regions leads to early downregulation of genes critical for neuronal communication, such as pion and KCNAB2, and later to the upregulation of stress-related and signaling genes, including Neurod1, Neurod2, and Gnai1. These shifts in gene regulation suggest that while the brain attempts to counteract the excess in proNGF, its delay and inefficacy may contribute to early-stage Alzheimer's disease processes.

References

Levi-Montalcini, R., The nerve growth factor 35 years later. Science, 1987. 237(4819): p. 1154-62. DOI: https://doi.org/10.1126/science.3306916

Zheng, C., et al., Amyloid ?-abrogated TrkA ubiquitination in PC12 cells analogous to Alzheimer's disease. J Neurochem, 2015. 133(6): p. 919-25. DOI: https://doi.org/10.1111/jnc.13076

Fasulo, L., et al., ProNGF Drives Localized and Cell Selective Parvalbumin Interneuron and Perineuronal Net Depletion in the Dentate Gyrus of Transgenic Mice. Front Mol Neurosci, 2017. 10: p. 20. DOI: https://doi.org/10.3389/fnmol.2017.00020

Zhu, M. and D. Saffen, Alzheimer’s disease candidate gene PION is differentially expressed in human prefrontal cortex. Molecular Neurodegeneration, 2012. 7(1): p. S25. DOI: https://doi.org/10.1186/1750-1326-7-S1-S25

Hempstead, B.L., Commentary: Regulating proNGF action: multiple targets for therapeutic intervention. Neurotox Res, 2009. 16(3): p. 255-60. DOI: https://doi.org/10.1007/s12640-009-9054-9

Greene, L.A. and D.R. Kaplan, Early events in neurotrophin signalling via Trk and p75 receptors. Curr Opin Neurobiol, 1995. 5(5): p. 579-87. DOI: https://doi.org/10.1016/0959-4388(95)80062-X

Meakin, S.O. and E.M. Shooter, The nerve growth factor family of receptors. Trends Neurosci, 1992. 15(9): p. 323-31. DOI: https://doi.org/10.1016/0166-2236(92)90047-C

Pedraza, C.E., et al., Pro-NGF isolated from the human brain affected by Alzheimer's disease induces neuronal apoptosis mediated by p75NTR. Am J Pathol, 2005. 166(2): p. 533-43. DOI: https://doi.org/10.1016/S0002-9440(10)62275-4

Sycheva, M., et al., Pro-Nerve Growth Factor Induces Activation of RhoA Kinase and Neuronal Cell Death. Brain Sci, 2019. 9(8). DOI: https://doi.org/10.3390/brainsci9080204

Hardy, J.A. and G.A. Higgins, Alzheimer's Disease: The Amyloid Cascade Hypothesis. Science, 1992. 256(5054): p. 184-185. DOI: https://doi.org/10.1126/science.1566067

Sheppard, O. and M. Coleman, Alzheimer’s Disease: Etiology, Neuropathology and Pathogenesis, in Alzheimer’s Disease: Drug Discovery, X. Huang, Editor. 2020, Exon Publications. Copyright: The Authors.: Brisbane (AU) .

Zhang, H., et al., Interaction between A? and Tau in the Pathogenesis of Alzheimer's Disease. Int J Biol Sci, 2021. 17(9): p. 2181-2192. DOI: https://doi.org/10.7150/ijbs.57078

Haakonsen, D.L., et al., Stress response silencing by an E3 ligase mutated in neurodegeneration. Nature, 2024. 626(8000): p. 874-880. DOI: https://doi.org/10.1038/s41586-023-06985-7

?ernotová, D., et al., Linking Social Cognition, Parvalbumin Interneurons, and Oxytocin in Alzheimer's Disease: An Update. J Alzheimers Dis, 2023. 96(3): p. 861-875. DOI: https://doi.org/10.3233/JAD-230333

Cherubini, E., et al., The depolarizing action of GABA controls early network activity in the developing hippocampus. Mol Neurobiol, 2011. 43(2): p. 97-106. DOI: https://doi.org/10.1007/s12035-010-8147-z

Do Carmo, S., B. Kannel, and A.C. Cuello, The Nerve Growth Factor Metabolic Pathway Dysregulation as Cause of Alzheimer's Cholinergic Atrophy. Cells, 2021. 11(1). DOI: https://doi.org/10.3390/cells11010016

Botterill, J.J., et al., An Excitatory and Epileptogenic Effect of Dentate Gyrus Mossy Cells in a Mouse Model of Epilepsy. Cell Rep, 2019. 29(9): p. 2875-2889.e6. DOI: https://doi.org/10.1016/j.celrep.2019.10.100

Mohapel, P., et al., Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging, 2005. 26(6): p. 939-46. DOI: https://doi.org/10.1016/j.neurobiolaging.2004.07.015

Ioannou, M.S. and M. Fahnestock, ProNGF, but Not NGF, Switches from Neurotrophic to Apoptotic Activity in Response to Reductions in TrkA Receptor Levels. Int J Mol Sci, 2017. 18(3). DOI: https://doi.org/10.3390/ijms18030599

Feng, D., et al., Molecular and Structural Insight into proNGF Engagement of p75NTR and Sortilin. Journal of Molecular Biology, 2010. 396(4): p. 967-984. DOI: https://doi.org/10.1016/j.jmb.2009.12.030

Becker, E.B.E., et al., Characterization of the c-Jun N-Terminal Kinase-BEL Signaling Pathway in Neuronal Apoptosis. The Journal of Neuroscience, 2004. 24(40): p. 8762. DOI: https://doi.org/10.1523/JNEUROSCI.2953-04.2004

Niewiadomska, G., A. Mietelska-Porowska, and M. Mazurkiewicz, The cholinergic system, nerve growth factor and the cytoskeleton. Behavioural Brain Research, 2011. 221(2): p. 515-526. DOI: https://doi.org/10.1016/j.bbr.2010.02.024

Steelman, L.S., et al., Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. 2011(1945-4589 (Electronic)). DOI: https://doi.org/10.18632/aging.100296

Fahnestock, M. and A. Shekari, ProNGF and Neurodegeneration in Alzheimer's Disease. Front Neurosci, 2019. 13: p. 129. DOI: https://doi.org/10.3389/fnins.2019.00129

Underwood, C.K. and E.J. Coulson, The p75 neurotrophin receptor. The International Journal of Biochemistry & Cell Biology, 2008. 40(9): p. 1664-1668. DOI: https://doi.org/10.1016/j.biocel.2007.06.010

Smyth, G.K., limma: Linear Models for Microarray Data, in Bioinformatics and Computational Biology Solutions Using R and Bioconductor. 2005.

R Core Team, R: A Language and Environment for Statistical Computing. 2025: R Foundation for Statistical Computing.

Sean, D. and P.S. Meltzer, GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 2007.

Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-50. DOI: https://doi.org/10.1073/pnas.0506580102

Xie, Z., et al., Gene Set Knowledge Discovery with Enrichr. Curr Protoc, 2021. 1(3): p. e90. DOI: https://doi.org/10.1002/cpz1.90

Chen, E.Y., et al., Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 2013. 14: p. 128. DOI: https://doi.org/10.1186/1471-2105-14-128

Yu, Y., et al., Distinct forms of amyloid-? moderate sleep duration through NAD + -linked redox metabolism in Alzheimer’s disease. 2025. DOI: https://doi.org/10.1101/2025.02.26.640405

He, G., et al., Gamma-secretase activating protein is a therapeutic target for Alzheimer's disease. Nature, 2010. 467(7311): p. 95-8. DOI: https://doi.org/10.1038/nature09325

Guo, Z., et al., In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model. Cell Stem Cell, 2014. 14(2): p. 188-202. DOI: https://doi.org/10.1016/j.stem.2013.12.001

Salama, R., et al., Functional classification of GNAI1 disorder variants in C. elegans uncovers conserved and cell-specific mechanisms of dysfunction. bioRxiv, 2025. DOI: https://doi.org/10.1101/2025.08.18.670960

Muir, A.M., et al., Variants in GNAI1 cause a syndrome associated with variable features including developmental delay, seizures, and hypotonia. Genet Med, 2021. 23(5): p. 881-887. DOI: https://doi.org/10.1038/s41436-020-01076-8

De Deurwaerdère, P. and G. Di Giovanni, Serotonin in Health and Disease. Int J Mol Sci, 2020. 21(10). DOI: https://doi.org/10.3390/ijms21103500

Di Giovanni, G. and P. De Deurwaerdère, Serotonin research: Crossing scales and boundaries. Neuropharmacology, 2020. 181: p. 108340. DOI: https://doi.org/10.1016/j.neuropharm.2020.108340

Proepper, C., et al., The Kvbeta2 subunit of voltage-gated potassium channels is interacting with ProSAP2/Shank3 in the PSD. Neuroscience, 2014. 261: p. 133-43. DOI: https://doi.org/10.1016/j.neuroscience.2013.10.045

Satoh, J., et al., Immunohistochemical characterization of gamma-secretase activating protein expression in Alzheimer's disease brains. Neuropathol Appl Neurobiol, 2012. 38(2): p. 132-41. DOI: https://doi.org/10.1111/j.1365-2990.2011.01206.x

Jia, E., et al., Transcriptomic profiling of differentially expressed genes and related pathways in different brain regions in Parkinson's disease. Neurosci Lett, 2020. 732: p. 135074. DOI: https://doi.org/10.1016/j.neulet.2020.135074

Dean, B., et al., Decreased muscarinic1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry, 2002. 7(10): p. 1083-91. DOI: https://doi.org/10.1038/sj.mp.4001199

Gray, J.A. and B.L. Roth, Molecular targets for treating cognitive dysfunction in schizophrenia. Schizophr Bull, 2007. 33(5): p. 1100-19. DOI: https://doi.org/10.1093/schbul/sbm074

Lopez, L.M., et al., Genes from a translational analysis support a multifactorial nature of white matter hyperintensities. Stroke, 2015. 46(2): p. 341-7. DOI: https://doi.org/10.1161/STROKEAHA.114.007649

Silver, M., et al., Identification of gene pathways implicated in Alzheimer's disease using longitudinal imaging phenotypes with sparse regression. Neuroimage, 2012. 63(3): p. 1681-94. DOI: https://doi.org/10.1016/j.neuroimage.2012.08.002

Chen, Y.C., et al., A NeuroD1 AAV-Based Gene Therapy for Functional Brain Repair after Ischemic Injury through In Vivo Astrocyte-to-Neuron Conversion. Mol Ther, 2020. 28(1): p. 217-234. DOI: https://doi.org/10.1016/j.ymthe.2019.09.003

Wu, Z., et al., Brain-Wide Neuroregenerative Gene Therapy Improves Cognition in a Mouse Model of Alzheimer's Disease. Adv Sci (Weinh), 2025. 12(14): p. e2410080. DOI: https://doi.org/10.1002/advs.202410080

Dolgacheva, L.P., et al., Serotonergic Regulation in Alzheimer's Disease. Int J Mol Sci, 2025. 26(11). DOI: https://doi.org/10.3390/ijms26115218

Marner, L., et al., Loss of serotonin 2A receptors exceeds loss of serotonergic projections in early Alzheimer's disease: a combined [11C]DASB and [18F]altanserin-PET study. Neurobiol Aging, 2012. 33(3): p. 479-87. DOI: https://doi.org/10.1016/j.neurobiolaging.2010.03.023

Smith, G.S., et al., Serotonin Degeneration and Amyloid-? Deposition in Mild Cognitive Impairment: Relationship to Cognitive Deficits. J Alzheimers Dis, 2023. 96(1): p. 215-227. DOI: https://doi.org/10.3233/JAD-230570

Bazzari, F.H. and A.H. Bazzari, BACE1 Inhibitors for Alzheimer's Disease: The Past, Present and Any Future? Molecules, 2022. 27(24). DOI: https://doi.org/10.3390/molecules27248823

McDade, E., et al., The case for low-level BACE1 inhibition for the prevention of Alzheimer disease. Nat Rev Neurol, 2021. 17(11): p. 703-714. DOI: https://doi.org/10.1038/s41582-021-00545-1

Imbimbo, B.P. and M. Watling, Investigational BACE inhibitors for the treatment of Alzheimer's disease. Expert Opin Investig Drugs, 2019. 28(11): p. 967-975. DOI: https://doi.org/10.1080/13543784.2019.1683160

Ohno, M., Accelerated long-term forgetting: A sensitive paradigm for detecting subtle cognitive impairment and evaluating BACE1 inhibitor efficacy in preclinical Alzheimer's disease. Front Dement, 2023. 2: p. 1161875. DOI: https://doi.org/10.3389/frdem.2023.1161875

Vassar, R., BACE1 inhibitor drugs in clinical trials for Alzheimer's disease. Alzheimers Res Ther, 2014. 6(9): p. 89. DOI: https://doi.org/10.1186/s13195-014-0089-7

Downloads

Published

2025-12-15

How to Cite

1.
Jiang N, Musalgavkar A, Ridi A, Srivatsan M, McCullumsmith RE, Imami AS, Bell NA. Tracking Neural Deterioration in proNGF-Overexpressing Mice: Hippocampal Serotonergic Dysfunction and Synaptic Loss Drive Neurodegeneration. Translation [Internet]. 2025 Dec. 15 [cited 2026 Jan. 7];14(S4). Available from: https://openjournals.utoledo.edu/index.php/translation/article/view/1901

Most read articles by the same author(s)