

Mind Over Microbes: The Role of the Microbiota-Gut-Brain Axis in Depression and Anxiety

Fatimah Aftab^{1*}, Sara Razoky¹, Sweta Desai¹

¹ Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences Toledo, OH

Email: Fatimah.Aftab@rockets.utoledo.edu

Received 10/23/2025

Accepted for publication 11/1/2025

Published 2/16/2026

1. Introduction

Depression and anxiety affect approximately 10% of the global population and significantly impact patient functioning (1). Due to their debilitating nature, it is essential to better understand the underlying pathophysiology of these disorders to develop more effective treatments.

Growing research on the microbiota-gut-brain axis (MGBA) has proven promising, implicating this system in the pathogenesis of depression and anxiety. The MGBA is a bidirectional communication network between the central nervous system (CNS) and the gastrointestinal (GI) tract. The gut microbiota consists of diverse microorganisms essential to this system. Evidence suggests that gut dysbiosis, a disruption in gut microbiota composition, causes dysregulation in immune activation and neurotransmitter production, leading to neuroinflammation and onset or worsening of mental health disorders (2). This review explores MGBA communication routes, microbiota alterations in depression and anxiety, and the therapeutic potential of probiotics, dietary modulation, and fecal microbiota transplantation (FMT).

2. Discussion

I. MGBA Communication Routes

The gut microbiota is a dynamic ecosystem of over a trillion microorganisms including bacteria, viruses, fungi, and archaea involved in digestion, neurotransmitter release, and immune function (1,3). Conversely, the brain influences gut microbial composition and function. The MGBA involves bidirectional communication through neuronal, endocrine, and immune pathways (4). Disruptions in this system are linked to the pathogenesis and severity of depression and anxiety (3).

Ia. Neuronal Pathways: ENS, Vagus Nerve, and Neurotransmitters

The enteric nervous system (ENS) innervates the gut and regulates motility and responses to microbial metabolites. ENS development is influenced by early-life bacterial exposure. Studies with germ-free (GF) mice exhibited underdeveloped ENS that improved with microbiota restoration (4).

The vagus nerve mediates gut-brain communication by transmitting signals from the GI tract to the brain either directly or through

enteroendocrine cells and hormones. One study found that lactic acid bacteria reduced anxiety-and depressive-like behavior in mice via GABA receptor modulation (4). Certain gut bacteria also affect brain neurotransmitters: *Lactobacillus* and *Bifidobacterium* produce GABA and histamine, while *Escherichia Coli* synthesizes serotonin, dopamine, and noradrenaline, metabolites that influence the CNS and mental health (4).

Ib. Endocrine Pathways: HPA-axis and Stress

The hypothalamic-pituitary-adrenal (HPA) axis regulates stress and the MGBA through endocrine signaling. HPA axis-produced stress hormones increase gut permeability, causing bacterial translocation that further activates the HPA axis and immune system (4). Dysregulation of this axis is a reliable biological marker of stress-related disorders. In one study, rats with activated stress circuits displayed anxious and depressive behaviors, which normalized after stress removal (5). GF mice also exhibit HPA axis dysfunction, increasing vulnerability to stress and cognitive disorders, further implicating MGBA involvement (4).

Ic. Immune Pathways: Inflammation and Neuroimmune Signaling

Gut-brain communication also occurs through immune mechanisms. Gut microbes regulate immune activity through dietary metabolites such as short-chain fatty acids (SCFAs) and bacterial fermentation products that are transported to the brain and modify immune responses (4). Dysbiosis can compromise intestinal barrier integrity, triggering immune activation and production of pro-inflammatory cytokines (i.e. IL-6, IL-1 β , and TNF- α). These cytokines can cross the blood-brain barrier and disrupt neurotransmitter balance, contributing to depression and anxiety (6, 7). In one, *Bifidobacteria* supplementation reduced levels of IL-6, INF- γ , and TNF- α in rats compared to controls (4).

II. Dysbiosis in Depression and Anxiety

Research describes characteristic changes in gut microbial composition in depression and anxiety. Depression is associated with reduced microbial diversity, elevated *Firmicutes* levels, and decreased *Bacteroides* and *Lactobacillus* levels. Anxiety correlates with decreased SCFA-producing bacteria and increased *Proteobacteria* levels (2). Dysbiosis also alters gut bacteria stress reactivity,

resulting in further anxiety. Microbial shifts, such as increased *Eggerthella* bacteria and decreased *Coprococcus* and *Subdoligranulum* are observed in both disorders (8). Overall, research strongly supports a correlation between depression, anxiety, and microbial dysbiosis.

I. Probiotics, Diet, and FMT

Probiotics show promise in reducing anxiety and depression, although results vary across strains and durations. One eight-week multi-strain probiotic trial showed significant depressive symptom reduction, while another study found reduced cortisol responses and somatic symptoms under stress with probiotic use (9).

Dietary modifications can also be beneficial by enhancing microbial diversity, decreasing inflammation, and producing favorable metabolites. Diets rich in omega-3 fatty acids, whole foods, and fiber are linked to decreased risk and severity of mental health disorders. FMT, transplantation of healthy microflora, is another promising treatment that restores healthy gut microbial composition and function (8).

3. Conclusion

The MGBA represents a compelling paradigm shift in the understanding and treatment of depression and anxiety. Gut microbiota modulates neuroinflammation, stress responses, and neurotransmitter production, making them a potential therapeutic target for psychiatric disorders. Probiotics, dietary modulation, and FMT have all been suggested as promising therapeutic interventions, although clinical efficacy varies among studies and further research is necessary. Integrating microbiome science with psychiatric care has potential to create an effective alternative to traditional pharmacological agents and enhance treatment outcomes in affected patients.

References

1. Simpson CA, Diaz-Arteche C, Eliby D, Schwartz OS, Simmons JG, Cowan CSM. *The gut microbiota in anxiety and depression - A systematic review*. Clin Psychol Rev, 2021. **83**: 101943.
2. Shaikh RG, Dey A, Singh VP, Khandagle A, M B, Naik S, Hasan A. *Understanding the Impact of the Gut Microbiome on Mental Health: A Systematic Review*. Cureus, 2025. **17**(1): e78100.
3. Wilson DR, Binford L, Hickson S. *The Gut Microbiome and Mental Health*. Journal of Holistic Nursing, 2023. **42**(1): p. 79-87.
4. Chudzik A, Orzyłowska A, Rola R, Stanisz GJ. *Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain-Gut-Microbiome Axis*. Biomolecules, 2021. **11**(7): 1000.
5. Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. *Gut microbiota's effect on mental health: The gut-brain axis*. Clin Pract, 2017. **7**(4): 987.
6. Bhatt S, Kanoujia J, Mohana Lakshmi S, Patil CR, Gupta G, Chellappan DK, Dua K. *Role of Brain-Gut-Microbiota Axis in Depression: Emerging Therapeutic Avenues*. CNS Neurol Disord Drug Targets, 2023. **22**(2): p. 276-288.
7. Sonali S, Ray B, Ahmed Tousif H, Rathipriya AG, Sunanda T, Mahalakshmi AM, Rungratanawanich W, Essa MM, Qoronfleh MW, Chidambaram SB, Song BJ. *Mechanistic Insights into the Link between Gut Dysbiosis and Major Depression: An Extensive Review*. Cells, 2022. **11**(8): 1362.
8. Kumar A, Pramanik J, Goyal N, Chauhan D, Sivamaruthi BS, Prajapati BG, Chaiyasut C. *Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options*. Pharmaceuticals (Basel), 2023. **16**(4): 565.
9. Dziedzic A, Maciąk K, Bliżniewska-Kowalska K, Gałecka M, Kobierecka W, Saluk J. *The Power of Psychobiotics in Depression: A Modern Approach through the Microbiota-Gut-Brain Axis: A Literature Review*. Nutrients, 2024. **16**(7):1054.