doi:10.46570/utjms-2025-1485

Gut Microbiota Modulation: Akkermansia muciniphila Lowers Blood Pressure by Restoring Serotonergic Gut-Vagal Signaling in Rodents

Hemaa Sree Kumar^{1*}, Sarah Alekhtiar¹, Emily Otmanowski¹, Adriana Alviter Plata¹, Nicole Bearss¹, Rohit Shukla^{2,3}, Dhananjay Yadav^{2,3,4}, Vivek Kumar^{2,3,4}, MiaGB Consortium⁵, Shalini Jain^{2,3,4}, Hariom Yadav^{2,3,4}, Guillaume de Lartigue⁶, Jasenka Zubcevic^{2,3}

¹College of Medicine and Life Sciences, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43615

²USF Center for Microbiome Research, Microbiomes Institute, , Tampa, FL, USA

³Department of Neurosurgery and Brain Repair, University of South Florida (USF) Morsani College of Medicine, Tampa, FL, USA;

⁴Microbiome in aging Gut and Brain Consortium in USF, UCF, FAU, Miami Jewish and UNF, Florida, USA

⁵Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, PA, USA.

Email: hsreekumar@usf.edu

Received: 12/5/2024

Accepted: 12/20/2024

Published: 10/15/2025

Background: The gut microbiome is essential in maintaining overall host health including effects on blood pressure, metabolism, and neural signaling. An imbalance in gut microbiota has been linked to hypertension, but specific mechanisms underlying host-microbiota interaction remain poorly understood.

Objective: Our recent study established a direct and causative link between gut dysbiosis associated with hypertension and reduced serotonergic vagal signaling from the colon, contributing to elevated blood pressure in rodents. However, the exact role of a specific gut bacteria in this context has yet to be elucidated.

Methods/Results: Using bacterial sequencing and real time PCR, we observed significantly decreased abundance of *Akkermansia muciniphila* (*A. muciniphila*), a beneficial human gut commensal, in rodent recipients of fecal microbiota transplant from spontaneously hypertensive rats (SHR). Interestingly, the reduced fecal abundance of *A. muciniphila* was also observed in a Microbiome in aging Gut and Brain (MiaGB) consortium cohort of hypertensive middle- and older- age adults compared to normotensive controls (~5-fold, p<0.05). This reduction was associated with elevated systolic blood pressure (~10-12mmHg) and diminished serotonergic vagal signaling via 5HT3a receptors (5HT3aRs) (2-fold, p<0.05) in rodents receiving the microbiota transplants from the SHR compared to those transplanted with normotensive controls. Conversely, daily administration of *A. muciniphila* (108 CFU) to SHR via oral gavage for 8 weeks significantly reduced systolic blood pressure, measured by radiotelemetry (by ~20mmHg, p<0.01), elevated colonic serotonin (by ~20ng/mg

UTJMS 2025 August 22, 14(S1):e1-e2

doi:10.46570/utjms-2025-1485

tissue, p<0.01) measured by ELISA, and real time PCR showed increased expression of vagal 5HT3aRs (\sim 50%, p<0.05), with no significant changes in the gut bacterial composition and diversity.

Conclusion: This study highlights the potential for leveraging *A. muciniphila* as new therapeutics for alleviation of gut dysbiosis-associated hypertension via serotonergic vagal signaling from the gut.

Keywords: Bacteria ,Serotonin, Vagus, Blood Pressure, Gut Microbiota

Funding support: HL152163; FDOH 22A17; U01AG076928; R01AG071762, R21AG072379, and R21AG082164