Blocking Parathyroid Hormone 1 Receptor Inhibits Prostate Cancer Metastases

Shubhra Kanti Dey1*, Yawei Zhao2, Shang Su3, Xiaohong Li3

1College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio 43614
2Post Doctoral Research Associate, Department of Cell and Cancer Biology, The University of Toledo, Toledo, Ohio 43614
3Department of Cell and Cancer Biology, The University of Toledo, Toledo, Ohio 43614

*Corresponding author: ShubhraKanti.Dey@rockets.utoledo.edu

Published: 22 May 2024

Background: Patients with metastatic castration-resistant prostate cancer (mCRPC) have 30% of the 5-year survival rate and contribute significantly to prostate cancer-related death. Parathyroid hormone-related protein (PTHrP), secreted by cancer cells, is shown to be a driver for cancer-induced bone metastasis, including mCRPC. However, clinical trials using PTHrP monoclonal antibodies demonstrated only palliative effects. On the other hand, PTHrP affects through the only known receptor, parathyroid hormone 1 receptor (PTH1R), which is a member of the G protein-coupled receptor that consists of up to 35% of all clinical drug targets. Therefore, we will investigate the role of PTH1R in prostate cancer metastasis using genetic and pharmacological approaches.

Methods: To investigate the paracrine effect of PTH1R on advanced prostate cancer metastases, we crossed the floxed PTH1R (PTH1R^{FloxE2}) mouse with the Col1α2 CreERT mouse. Following tamoxifen administration, the Cre-positive mouse's mesenchymal cell-specific PTH1R gene is deleted, producing a PTH1R^{ColCreERT} KO mouse. The Cre-negative littermates with the same tamoxifen injections were used as the control PTH1R^{FloxE2} mouse. Pharmacologically, we tested the effect of blocking PTH1R on prostate cancer cell growth and viability.

Results: Human prostate cancer cells, PC3 cells (luciferase labeled), were intracardially injected into both PTH1R^{FloxE2} and PTH1R^{ColCreERT} KO littermates. We found PC3 metastases in various organs, including the liver, kidney, and bones. The overall and organ-specific metastases, such as bone metastases, were significantly inhibited in the PTH1R^{ColCreERT} KO, compared to the PTH1R^{FloxE2} mice, suggesting that blocking the paracrine effects of PTH1R effectively inhibits prostate cancer metastases. In vitro, we used a small molecule inhibitor called XC039 and a commercially available PTH1R peptide antagonist (Asn10, Leu11, D-Trp12)-PTHrP(7-34) amide to block PTH1R. Both antagonist and XC039 can suppress ligand-dependent cAMP production and XC039, but not the peptide antagonist, significantly inhibited prostate cancer cell growth.

Conclusion: These data suggest that inhibiting PTH1R could effectively inhibit prostate cancer metastases.