Machine Learning Analysis of Identifies Polyunsaturated Fatty Acid Metabolites Predictive of Adverse Outcomes In Heart Failure with Preserved Ejection Fraction Patients

Authors

DOI:

https://doi.org/10.46570/utjms.vol11-2023-951

Keywords:

Machine learning, Polyunsaturated Fatty Acid (PUFA) metabolites, Heart failure with preserved ejection fraction (HFpEF), Cardiovascular health, Lipidomics framework

Downloads

Published

2023-12-15

How to Cite

1.
Faleel D, Elzanaty A, Aradhyula V, Vyas R, Dube P, T. Haller S, Gupta R, J. Kennedy D, J. Khouri S. Machine Learning Analysis of Identifies Polyunsaturated Fatty Acid Metabolites Predictive of Adverse Outcomes In Heart Failure with Preserved Ejection Fraction Patients . Translation [Internet]. 2023 Dec. 15 [cited 2025 Aug. 11];11(3). Available from: http://openjournals.utoledo.edu/index.php/translation/article/view/951

Issue

Section

Dr. Lance D. Dworkin Department of Medicine Research Symposium

Most read articles by the same author(s)